Advertisements
Advertisements
प्रश्न
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
पर्याय
y = `(x^2 + "c")/(4x^2)`
y = `x^2/4 + "c"`
y = `(x^4 + "c")/x^2`
y = `(x^4 + "c")/(4x^2)`
उत्तर
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is y = `(x^4 + "c")/(4x^2)`.
Explanation:
I.F. = `"e"^(int 2/x "d"x) = "e"^(2logx)`
= `"e"^(logx^2)`
= x2.
Therefore, the solution is y.
x2 = `int x^2 * x "d"x`
= `x^4/4 + "k"`,
i.e., y = `(x^4 + "c")/(4x^2)`.
APPEARS IN
संबंधित प्रश्न
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
If y = etan x+ (log x)tan x then find dy/dx
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.