Advertisements
Advertisements
प्रश्न
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
पर्याय
cosx
tanx
secx
sinx
उत्तर
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is secx.
Explanation:
The given differential equation is
`cos x * ("d"y)/("d"x) + y sinx` = 1
⇒ `("d"y)/("d"x) + sinx/cosx y = 1/cosx`
⇒ `("d"y)/("d"x) + tan x y = secx`
Here, P = tan x and Q = sec x
∴ Integrating factor = `"e"^(int Pdx)`
= `"e"^(int tan x "d"x)`
= `"e"^(log secx)`
= sec x.
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Find the differential equation representing the curve y = cx + c2.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
If y = etan x+ (log x)tan x then find dy/dx
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
(x + y − 1) dy = (x + y) dx
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\frac{dy}{dx} + y = 4x\]
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.