मराठी

Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.

पर्याय

  • tanx + tany = k

  • tanx – tany = k

  • `tanx/tany` = k

  • tanx . tany = k

MCQ
रिकाम्या जागा भरा

उत्तर

Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is tanx . tany = k.

Explanation:

The given differential equation is tan y sec2x dx + tan x sec2y dy = 0

⇒ tan x sec2y dy = – tan y sec2x dx

⇒ `(sec^2y)/tany * "d"y = (-sec^2x)/tanx * "d"x`

Integrating both sides, we get

⇒ `int (sec^2y)/tany "d"y = int (-sec^2x)/tanx  "d"x`

⇒ `log |tan y| = - log |tan x| + log "c"`

⇒ `log |tan y| + log |tan x| = log "c"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 41 | पृष्ठ १९६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + y = 4x\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×