Advertisements
Advertisements
प्रश्न
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
पर्याय
tanx + tany = k
tanx – tany = k
`tanx/tany` = k
tanx . tany = k
उत्तर
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is tanx . tany = k.
Explanation:
The given differential equation is tan y sec2x dx + tan x sec2y dy = 0
⇒ tan x sec2y dy = – tan y sec2x dx
⇒ `(sec^2y)/tany * "d"y = (-sec^2x)/tanx * "d"x`
Integrating both sides, we get
⇒ `int (sec^2y)/tany "d"y = int (-sec^2x)/tanx "d"x`
⇒ `log |tan y| = - log |tan x| + log "c"`
⇒ `log |tan y| + log |tan x| = log "c"`
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + y = 4x\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.