Advertisements
Advertisements
प्रश्न
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
उत्तर
We have,
\[\cos \left( \frac{dy}{dx} \right) = a\]
\[ \Rightarrow \frac{dy}{dx} = \cos^{- 1} a\]
\[ \Rightarrow dy = \cos^{- 1} a dx\]
Integrating both sides, we get
\[\int dy = \int \cos^{- 1} a dx\]
\[ \Rightarrow y = x \cos^{- 1} a + C\]
Now,
When `x = 0, y = 1`
\[ \therefore 1 = 0 + C\]
\[ \Rightarrow C = 1\]
Putting the value of `C` in (1), we get
\[y = x \cos^{- 1} a + 1\]
\[ \Rightarrow \cos\left( \frac{y - 1}{x} \right) = a\]
APPEARS IN
संबंधित प्रश्न
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
cos (x + y) dy = dx
(x2 + 1) dy + (2y − 1) dx = 0
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.