मराठी

The Solution of the Differential Equation X D Y D X = Y + X Tan Y X , is - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is

पर्याय

  • \[\sin\frac{x}{y} = x + C\]

  • \[\sin\frac{y}{x} = Cx\]

  • \[\sin\frac{x}{y} = Cy\]

  • \[\sin\frac{y}{x} = Cy\]

MCQ

उत्तर

\[\sin\frac{y}{x} = Cx\]

 

We have,
\[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} + \tan\frac{y}{x} . . . . . \left( 1 \right)\]
\[\text{ Let }y = vx\]
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{ Putting the above value in }\left( 1 \right),\text{ we get}\]
\[v + x\frac{dv}{dx} = v + \tan v\]
\[ \Rightarrow x\frac{dv}{dx} = \tan v\]
\[ \Rightarrow \frac{dv}{\tan v} = \frac{dx}{x}\]
Integrating both sides, we get
\[\log \sin v = \log x + \log C\]
\[ \Rightarrow \log \sin v - \log x = \log C\]
\[ \Rightarrow \log\frac{\sin v}{x} = \log C\]
\[ \Rightarrow \frac{\sin v}{x} = C\]
\[ \Rightarrow \sin v = Cx\]
\[ \Rightarrow \sin\left( \frac{y}{x} \right) = Cx .........\left[\because y = vx \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 21 | पृष्ठ १४१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The number of arbitrary constants in the general solution of differential equation of fourth order is


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

(x + y − 1) dy = (x + y) dx


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


\[\frac{dy}{dx} - y \tan x = e^x\]


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×