Advertisements
Advertisements
प्रश्न
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
पर्याय
\[\sin\frac{x}{y} = x + C\]
\[\sin\frac{y}{x} = Cx\]
\[\sin\frac{x}{y} = Cy\]
\[\sin\frac{y}{x} = Cy\]
उत्तर
\[\sin\frac{y}{x} = Cx\]
We have,
\[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} + \tan\frac{y}{x} . . . . . \left( 1 \right)\]
\[\text{ Let }y = vx\]
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{ Putting the above value in }\left( 1 \right),\text{ we get}\]
\[v + x\frac{dv}{dx} = v + \tan v\]
\[ \Rightarrow x\frac{dv}{dx} = \tan v\]
\[ \Rightarrow \frac{dv}{\tan v} = \frac{dx}{x}\]
Integrating both sides, we get
\[\log \sin v = \log x + \log C\]
\[ \Rightarrow \log \sin v - \log x = \log C\]
\[ \Rightarrow \log\frac{\sin v}{x} = \log C\]
\[ \Rightarrow \frac{\sin v}{x} = C\]
\[ \Rightarrow \sin v = Cx\]
\[ \Rightarrow \sin\left( \frac{y}{x} \right) = Cx .........\left[\because y = vx \right]\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The number of arbitrary constants in the general solution of differential equation of fourth order is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
(x + y − 1) dy = (x + y) dx
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.