Advertisements
Advertisements
प्रश्न
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
उत्तर
We have,
\[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}\]
\[ \Rightarrow \frac{dy}{dx} + \frac{2x}{\left( 1 + x^2 \right)}y = \frac{1}{\left( 1 + x^2 \right)^2}\]
\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]
\[P = \frac{2x}{\left( 1 + x^2 \right)} \]
\[Q = \frac{1}{\left( 1 + x^2 \right)^2}\]
Now,
\[I . F . = e^{\int\frac{2x}{\left( 1 + x^2 \right)}dx} \]
\[ = e^{\log \left| 1 + x^2 \right|} \]
\[ = 1 + x^2 \]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow y\left( 1 + x^2 \right) = \int\frac{1}{\left( 1 + x^2 \right)} dx + C\]
\[ \Rightarrow y\left( 1 + x^2 \right) = \tan^{- 1} x + C . . . . . \left( 1 \right)\]
Now,
When x = 1, y = 0
\[ \therefore 0\left( 1 + 1 \right) = \tan^{- 1} 1 + C\]
\[ \Rightarrow C = - 1\]
\[ \Rightarrow C = - \frac{\pi}{4}\]
Putting the value of `C` in (1), we get
\[y\left( 1 + x^2 \right) = \tan^{- 1} x - \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
\[\frac{dy}{dx} - y \tan x = e^x\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the differential equation of all non-horizontal lines in a plane.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.