मराठी

Find a Particular Solution of the Following Differential Equation:- X2 Dy + (Xy + Y2) Dx = 0; Y = 1 When X = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1

बेरीज

उत्तर

We have,

x2dy+(xy+y2)dx=0

dydx=(xy+y2x2)

Let y = vx

dydx=v+xdvdx

v+xdvdx=(vx2+v2x2x2)

xdvdx=(v+v2)v

xdvdx=2vv2

1v2+2vdv=1xdx

Integrating both sides, we get

1v2+2vdy=1xdx

1v2+2v+11dy=1xdx

1(v+1)2(1)2dy=1xdx

12×1log|v+11v+1+1|=log|x|+logC

12log|vv+2|=log|x|+logC

log|vv+2|=2log|x|+2logC

log|vv+2|+log|x2|=logC2

log|vx2v+2|=logC2

|vx2v+2|=C2

|vx2v+2|=k, where k=2C

|yxx2yx+2|=k

|x2yy+2x|=k.....(1)

Now,

When x = 1, y = 1

|11+2|=k

k=13

Putting the value of k in (1), we get

|x2yy+2x|=13

3x2y=±(y+2x)

But y(1)=1 does not satisfy the equation 3x2y=(y+2x)

3x2y=y+2x

y=2x3x21

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 67.3 | पृष्ठ १४७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The differential equation of y=cx+c2 is :

(a)x4(dydx)2-xdydx=y

(b)d2ydx2+xdydx+y=0

(c)x3(dydx)2+xdydx=y

(d)d2ydx2+dydx-y=0


If   y=sinx+sinx+sinx+....., then show that dydx=cosx2y-1


The differential equation of the family of curves y=c1ex+c2e-x is......

(a)d2ydx2+y=0

(b)d2ydx2-y=0

(c)d2ydx2+1=0

(d)d2ydx2-1=0


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Solve the differential equation cos2xdydx + y = tan x


The solution of the differential equation xdydx=y+xtanyx, is


Find the general solution of the differential equation xcos(yx)dydx=ycos(yx)+x.


The solution of the differential equation dydx=yx+ϕ(yx)ϕ(yx) is


dydx=sinx+xcosxy(2logy+1)


dydx=(x+y)2


(x + y − 1) dy = (x + y) dx


ysec2 x +(y +7)tan xdydx=0


dydx+2y=sin3x


dydx+5y=cos4x


dydx+y tan x = xn cos x, n1


For the following differential equation, find the general solution:- dydx=sin1x


Solve the following differential equation:- (xy)dydx=x+2y


Solve the following differential equation:- y dx + xlog yxdy-2xdy=0


Solve the following differential equation:-

xdydx+2y=x2logx


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Solution of the differential equation dxx+dyy = 0 is ______.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


The general solution of the differential equation dydx=ex-y is ______.


The general solution of the differential equation dydx+yx = 1 is ______.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


The number of solutions of dydx=y+1x-1 when y (1) = 2 is ______. 


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The general solution of the differential equation dydx=ex22+xy is ______.


Which of the following is the general solution of d2ydx2-2dydx+y = 0?


General solution of the differential equation of the type dxdx+P1x=Q1 is given by ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


General solution of dydx+y = sinx is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.