Advertisements
Advertisements
प्रश्न
(x + y − 1) dy = (x + y) dx
उत्तर
We have,
\[\left( x + y - 1 \right)dy = \left( x + y \right)dx\]
\[\frac{dy}{dx} = \frac{\left( x + y \right)}{\left( x + y - 1 \right)}\]
Putting `x + y = v,` we get
\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]
\[ \therefore \frac{dv}{dx} - 1 = \frac{v}{\left( v - 1 \right)}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{v}{\left( v - 1 \right)} + 1\]
\[ \Rightarrow \frac{dv}{dx} = \frac{v + v - 1}{\left( v - 1 \right)}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{2v - 1}{\left( v - 1 \right)}\]
\[ \Rightarrow \frac{v - 1}{2v - 1} dv = dx\]
Integrating both sides, we get
\[\int\frac{v - 1}{2v + 1} dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int\frac{2v}{2v - 1}dv - \int\frac{1}{2v - 1}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int\frac{2v - 1 + 1}{2v - 1}dv - \int\frac{1}{2v - 1}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int dv + \frac{1}{2}\int\frac{1}{2v - 1}dv - \int\frac{1}{2v - 1}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int dv - \frac{1}{2}\int\frac{1}{2v - 1}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}v - \frac{1}{4}\log \left| 2v - 1 \right| = x + C\]
\[ \Rightarrow \frac{1}{2}\left( x + y \right) - \frac{1}{4}\log \left| 2x + 2y - 1 \right| = x + C\]
\[ \Rightarrow 2\left( x + y \right) - \log \left| 2x + 2y - 1 \right| = 4x + 4C\]
\[ \Rightarrow 2\left( x + y \right) - 4x - \log \left| 2x + 2y - 1 \right| = 4C \]
\[ \Rightarrow 2\left( y - x \right) - \log \left| 2x + 2y - 1 \right| = k,\text{ where }k = 4C\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
(x2 + 1) dy + (2y − 1) dx = 0
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of differential equation coty dx = xdy is ______.
Which of the following differential equations has `y = x` as one of its particular solution?
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.