English

(X + Y − 1) Dy = (X + Y) Dx - Mathematics

Advertisements
Advertisements

Question

(x + y − 1) dy = (x + y) dx

Sum

Solution

We have,

\[\left( x + y - 1 \right)dy = \left( x + y \right)dx\]

\[\frac{dy}{dx} = \frac{\left( x + y \right)}{\left( x + y - 1 \right)}\]

Putting `x + y = v,` we get

\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]

\[ \therefore \frac{dv}{dx} - 1 = \frac{v}{\left( v - 1 \right)}\]

\[ \Rightarrow \frac{dv}{dx} = \frac{v}{\left( v - 1 \right)} + 1\]

\[ \Rightarrow \frac{dv}{dx} = \frac{v + v - 1}{\left( v - 1 \right)}\]

\[ \Rightarrow \frac{dv}{dx} = \frac{2v - 1}{\left( v - 1 \right)}\]

\[ \Rightarrow \frac{v - 1}{2v - 1} dv = dx\]

Integrating both sides, we get

\[\int\frac{v - 1}{2v + 1} dv = \int dx\]

\[ \Rightarrow \frac{1}{2}\int\frac{2v}{2v - 1}dv - \int\frac{1}{2v - 1}dv = \int dx\]

\[ \Rightarrow \frac{1}{2}\int\frac{2v - 1 + 1}{2v - 1}dv - \int\frac{1}{2v - 1}dv = \int dx\]

\[ \Rightarrow \frac{1}{2}\int dv + \frac{1}{2}\int\frac{1}{2v - 1}dv - \int\frac{1}{2v - 1}dv = \int dx\]

\[ \Rightarrow \frac{1}{2}\int dv - \frac{1}{2}\int\frac{1}{2v - 1}dv = \int dx\]

\[ \Rightarrow \frac{1}{2}v - \frac{1}{4}\log \left| 2v - 1 \right| = x + C\]

\[ \Rightarrow \frac{1}{2}\left( x + y \right) - \frac{1}{4}\log \left| 2x + 2y - 1 \right| = x + C\]

\[ \Rightarrow 2\left( x + y \right) - \log \left| 2x + 2y - 1 \right| = 4x + 4C\]

\[ \Rightarrow 2\left( x + y \right) - 4x - \log \left| 2x + 2y - 1 \right| = 4C \]

\[ \Rightarrow 2\left( y - x \right) - \log \left| 2x + 2y - 1 \right| = k,\text{ where }k = 4C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 146]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 39 | Page 146

RELATED QUESTIONS

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


cos (x + y) dy = dx


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


y = aemx+ be–mx satisfies which of the following differential equation?


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×