Advertisements
Advertisements
Question
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Solution
Given equation is `("d"y)/("d"x) -3y = sin2x`
Here, P = –3 and Q = sin2x
∴ Integrating factor I.F. = `"e"^(int Pdx)`
= `"e"^(int-3dx)`
= `"e"^(-3x)`
∴ Solution is `y xx "I"."F". = int "Q" . "I"."F". "d"x + "c"`
⇒ `y . "e"^(-3x) = int sin2x . "e"^(-3x) "d"x + "c"`
Let I = `int sin_"I" 2x . "e"_"II"^(-3x) "d"x`
⇒ I = `sin 2x . int "e"^(-3x)"d"x - int("D"(sin 2x) . int"e"^(-3x) "d"x)"d"x`
⇒ I = `sin 2x . "e"^(-3x)/(-3) - int 2 cos2x . "e"^(-3x)/(-3) "d"x`
⇒ I = `"e"^(-3x)/(-3) sin2x + 2/3 int cos_"I" 2x . "e"_"II"^(-3x) "d"x`
⇒ I = `"e"^(-3x)/(-3) sin 2x + 2/3 [cos 2x . int "e"^(-3x) "d"x - int["D" cos2x . int "e"^(-3x) "d"x]"d"x]`
⇒ I = `"e"^(-3x)/(-3) sin 2x + 2/3 [cos 2x . "e"^(-3x)/(-3) - 2sin 2x . "e"^(-3x)/(-3)]"d"x`
⇒ I = `"e"^(-3x)/(-3) sin 2x - 2/9 cos2x . "e"^(-3x) - 4/9 int sin 2x. "e"^(-3x) "d"x`
⇒ `"e"^(-3x)/(-3) sin2x - 2/9 "e"^(-3x) cos 2x - 4/9 "I"`
⇒ `"I" + 4/9 "I" = "e"^(-3x)/(-3) sin 2x - 2/9 "e"^(-3x) cos 2x`
⇒ `13/9 "I" = - 1/9 [3"e"^(-3x) sin2x + 2"e"^(-3x) cos2x]`
⇒ I = `- 1/13 "e"^(-3x) [3 sin 2x + 2 cos2x]`
∴ The equation becomes `y . "e"^(-3x) = - 1/13 "e"^(-3x) [3 sin 2x + 2 cos 2x] + "c"`
∴ y = `- 1/13 [3 sin 2x + 2 cos 2x] + "c" . "e"^(3x)`
Hence, the required solution is y = `-[(3sin2x + 2cos2x)/13] + "c" . "e"^(3x)`
APPEARS IN
RELATED QUESTIONS
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
Which of the following differential equations has y = x as one of its particular solution?
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[\frac{dy}{dx} - y \tan x = e^x\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Which of the following differential equations has `y = x` as one of its particular solution?
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.