Advertisements
Advertisements
Question
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
Options
\[\phi\left( \frac{y}{x} \right) = kx\]
\[x\phi\left( \frac{y}{x} \right) = k\]
\[\phi\left( \frac{y}{x} \right) = ky\]
\[y\phi\left( \frac{y}{x} \right) = k\]
Solution
\[\phi\left( \frac{y}{x} \right) = kx\]
We have,
\[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\]
Let y = vx
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[ \therefore v + x\frac{dv}{dx} = v + \frac{\phi\left( v \right)}{\phi'\left( v \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{\phi\left( v \right)}{\phi'\left( v \right)}\]
\[ \Rightarrow \frac{\phi\left( v \right)}{\phi'\left( v \right)}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{\phi'\left( v \right)}{\phi\left( v \right)}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| \phi\left( v \right) \right| = \log \left| x \right| + \log k\]
\[ \Rightarrow \log \left| \phi\left( \frac{y}{x} \right) \right| - \log \left| x \right| = \log k\]
\[ \Rightarrow \log\left| \frac{\phi\left( \frac{y}{x} \right)}{x} \right| = \log k\]
\[ \Rightarrow \frac{\phi\left( \frac{y}{x} \right)}{x} = k\]
\[ \Rightarrow \phi\left( \frac{y}{x} \right) = kx\]
APPEARS IN
RELATED QUESTIONS
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
(x + y − 1) dy = (x + y) dx
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + 5y = \cos 4x\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.