English

The Solution of the Differential Equation D Y D X = Y X + ϕ ( Y X ) ϕ ′ ( Y X ) is - Mathematics

Advertisements
Advertisements

Question

The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is

Options

  • \[\phi\left( \frac{y}{x} \right) = kx\]

  • \[x\phi\left( \frac{y}{x} \right) = k\]

  • \[\phi\left( \frac{y}{x} \right) = ky\]

  • \[y\phi\left( \frac{y}{x} \right) = k\]

MCQ

Solution

\[\phi\left( \frac{y}{x} \right) = kx\]

 

We have,

\[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\]

Let y = vx

\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]

\[ \therefore v + x\frac{dv}{dx} = v + \frac{\phi\left( v \right)}{\phi'\left( v \right)}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{\phi\left( v \right)}{\phi'\left( v \right)}\]

\[ \Rightarrow \frac{\phi\left( v \right)}{\phi'\left( v \right)}dv = \frac{1}{x}dx\]

Integrating both sides, we get

\[\int\frac{\phi'\left( v \right)}{\phi\left( v \right)}dv = \int\frac{1}{x}dx\]

\[ \Rightarrow \log \left| \phi\left( v \right) \right| = \log \left| x \right| + \log k\]

\[ \Rightarrow \log \left| \phi\left( \frac{y}{x} \right) \right| - \log \left| x \right| = \log k\]

\[ \Rightarrow \log\left| \frac{\phi\left( \frac{y}{x} \right)}{x} \right| = \log k\]

\[ \Rightarrow \frac{\phi\left( \frac{y}{x} \right)}{x} = k\]

\[ \Rightarrow \phi\left( \frac{y}{x} \right) = kx\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 141]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 25 | Page 141

RELATED QUESTIONS

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


(x + y − 1) dy = (x + y) dx


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


\[\frac{dy}{dx} - y \tan x = e^x\]


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


x2 dy + (x2 − xy + y2) dx = 0


\[\frac{dy}{dx} + 5y = \cos 4x\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×