Advertisements
Advertisements
Question
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Solution
The given differential equation is `y + "d"/("d"x) (xy) = x(sinx + logx)`
⇒ `y + x * ("d"y)/("d"x) + y = x(sinx + logx)`
⇒ `x ("d"y)/("d"x) = x(sinx + logx) - 2y`
⇒ `("d"y)/("d"x) = (sinx + logx) - (2y)/x`
⇒ `("d"y)/("d"x) + 2x y = (sinx + logx)`
Here, P = `2/x` and Q = `(sinx + log x)`
Integrating factor I.F. = `"e"^(intPdx)`
= `"e"^(int 2/x dx)`
= `"e"^(2logx)`
= `"e"^(log x^2)`
= x2
∴ Solution is `y xx "I"."F". = int "Q"."I"."F". "d"x + "c"`
⇒ `y . x^2 = int (sinx + logx)x^2 "d"x + "c"` ....(1)
Let I = `int (sinx + logx)x^2 "d"x`
= `int_"I"x^2 sinx "d"x + int_"iII"^(x^2) log x "d"x`
= `[x^2 . int sinx "d"x - int("D"(x^2) . int sinx "d"x)"d"x] + [logx . intsinx "d"x - int ("D"(logx) . intx^2 "d"x)"d"x]`
= `[x^2(-cosx) -2 int - x cosx "d"x] + [logx . x^3/3 - int 1/x * x^3/3 "d"x]`
= `[-x^2 cosx + 2(xsinx - int1 .sinx "d"x)] + [x^3/3 log x - 1/3 int x^2 "d"x]`
= `-x^2cosx + 2x sinx + 2cosx + x^3/3 log x - 1/9 x^3`
Now from equation (1) we get,
`y . x^2 = -x^2 cosx + 2x sinx + 2cosx + x^3/3 log x - 1/9 x^3 + "c"`
∴ y = `-cosx + (2sinx)/x + (2cosx)/x^2 + (xlogx)/3 - 1/9 x + "c" .x^-2`
Hence, the required solution is `-cosx + (2sinx)/x + (2cosx)/x^2 + (xlogx)/3 - 1/9 x + "c" .x^-2`
APPEARS IN
RELATED QUESTIONS
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Solve the differential equation `dy/dx -y =e^x`
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
If y = etan x+ (log x)tan x then find dy/dx
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Which of the following differential equations has y = x as one of its particular solution?
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
Which of the following differential equations has `y = x` as one of its particular solution?
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.