Advertisements
Advertisements
Question
Which of the following differential equations has y = x as one of its particular solution?
Options
\[\frac{d^2 y}{d x^2} - x^2 \frac{dy}{dx} + xy = x\]
\[\frac{d^2 y}{d x^2} + x\frac{dy}{dx} + xy = x\]
\[\frac{d^2 y}{d x^2} - x^2 \frac{dy}{dx} + xy = 0\]
\[\frac{d^2 y}{d x^2} + x\frac{dy}{dx} + xy = 0\]
Solution
\[\frac{dy}{dx} = 1 . . . . . \left( 2 \right)\]
Differentiating again with respect to x, we get
\[ \Rightarrow \frac{d^2 y}{d x^2} = 0\]
\[ \Rightarrow \frac{d^2 y}{d x^2} + x^2 = x^2 \]
\[ \Rightarrow \frac{d^2 y}{d x^2} + x \times x = x^2 \times 1\]
\[ \Rightarrow \frac{d^2 y}{d x^2} + xy = x^2 \times 1 ............\left[\text{Using }\left( 1 \right) \right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} + xy = x^2 \frac{dy}{dx} .............\left[ \text{Using }\left( 2 \right) \right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} - x^2 \frac{dy}{dx} + xy = 0\]
APPEARS IN
RELATED QUESTIONS
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
x (e2y − 1) dy + (x2 − 1) ey dx = 0
(x + y − 1) dy = (x + y) dx
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + y = 4x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the differential equation of all non-horizontal lines in a plane.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.