Advertisements
Advertisements
Question
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Solution
`dy/dx=(xy)/(x^2+y^2) .....(1)`
This is a homogenous differential equation.
Substitute y = vx .....(2)
`⇒dy/dx=v+x (dv)/dx .....(3)`
From (1), (2) and (3), we have
`x (dv)/dx+v=(x (vx))/(x^2+(vx)^2)=(vx^2)/(x^2 (1+v^2))`
`⇒x (dv)/dx+v=v/(1+v^2)`
`⇒x (dv)/dx=v/(1+v^2)-v=(v-v-v^2)/(1+v^2)`
`⇒x (dv)/dx=−v^3/(1+v^2)`
`⇒(1+v^2)/v^3dv=−dx/x`
`⇒(1/v^3+1/v)dv=−dx/x`
Integrating both sides, we have
`v^(−3+1)/(−3+1)+lnv=−lnx+C`
`⇒−1/(2v^2)+lnv=−lnx+C`
`⇒−1/(2v^2)+lnvx=C`
`⇒−x^2/(2y^2)+lny=C`
Given: y = 1 when x = 0
⇒ C = 0
Thus, the particular solution of the given differential equation is given by
`lny=x^2/(2y^2)`
or x2 = 2y2 lny
APPEARS IN
RELATED QUESTIONS
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.