English

Find the particular solution of the differential equation dy/dx=(xy)/(x^2+y^2) given that y = 1, when x = 0. - Mathematics

Advertisements
Advertisements

Question

Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.

Solution

`dy/dx=(xy)/(x^2+y^2)                 .....(1)`

This is a homogenous differential equation.

Substitute y = vx             .....(2)

`⇒dy/dx=v+x (dv)/dx            .....(3)`

From (1), (2) and (3), we have

`x (dv)/dx+v=(x (vx))/(x^2+(vx)^2)=(vx^2)/(x^2 (1+v^2))`

`⇒x (dv)/dx+v=v/(1+v^2)`

`⇒x (dv)/dx=v/(1+v^2)-v=(v-v-v^2)/(1+v^2)`

`⇒x (dv)/dx=−v^3/(1+v^2)`

`⇒(1+v^2)/v^3dv=−dx/x`

`⇒(1/v^3+1/v)dv=−dx/x`

Integrating both sides, we have

`v^(−3+1)/(−3+1)+lnv=−lnx+C`

`⇒−1/(2v^2)+lnv=−lnx+C`

`⇒−1/(2v^2)+lnvx=C`

`⇒−x^2/(2y^2)+lny=C`

Given: y = 1 when x = 0

C = 0

Thus, the particular solution of the given differential equation is given by

`lny=x^2/(2y^2)`

or x2 = 2y2 lny

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Delhi Set 1

RELATED QUESTIONS

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×