English

The Solution of the Differential Equation D Y D X + 1 = E X + Y , is - Mathematics

Advertisements
Advertisements

Question

The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is

Options

  • (x + y) ex + y = 0

  • (x + C) ex + y = 0

  • (x − C) ex + y = 1

  • (x − C) ex + y + 1 =0

MCQ

Solution

(x − C) ex + y + 1 = 0

 

We have, 
\[\frac{dy}{dx} + 1 = e^{x + y} \]
\[\text{ Let }x + y = v\]
\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} + 1 = \frac{dv}{dx}\]
\[ \therefore \frac{dv}{dx} = e^v \]
\[ \Rightarrow e^{- v} dv = dx\]
Integrating both sides, we get
\[ - e^{- v} = x - C\]
\[ \Rightarrow - 1 = e^v \left( x - C \right)\]
\[ \Rightarrow \left( x - C \right) e^{x + y} + 1 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 142]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 27 | Page 142

RELATED QUESTIONS

If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


(x3 − 2y3) dx + 3x2 y dy = 0


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×