Advertisements
Advertisements
Question
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solution
We have,
\[\frac{dy}{dx} = \frac{2x}{y^2}\]
\[ \Rightarrow y^2 dy = 2x dx\]
Integrating both sides, we get
\[\int y^2 dy = 2\int x dx\]
\[ \Rightarrow \frac{y^3}{3} = x^2 + C . . . . . \left( 1 \right)\]
Now the given curve passes theough (- 2, 3)
Therefore, when x = - 2, y = 3
Substituting x = - 2 and y = 3 in (1) we get
\[\frac{3^3}{3} = \left( - 2 \right)^2 + C\]
\[ \Rightarrow 9 = 4 + C\]
\[ \Rightarrow C = 5\]
Putting the value of `C` in (1), we get
\[\frac{y^3}{3} = x^2 + 5\]
\[ \Rightarrow y^3 = 3 x^2 + 15\]
\[ \Rightarrow y = \left( 3 x^2 + 15 \right)^\frac{1}{3}\]
APPEARS IN
RELATED QUESTIONS
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} - y \tan x = e^x\]
x2 dy + (x2 − xy + y2) dx = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + y = 4x\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.