English

Find the Equation of a Curve Passing Through the Point (−2, 3), Given that the Slope of the Tangent to the Curve at Any Point (X, Y) is 2 X Y 2 . - Mathematics

Advertisements
Advertisements

Question

Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`

Sum

Solution

We have,

\[\frac{dy}{dx} = \frac{2x}{y^2}\]

\[ \Rightarrow y^2 dy = 2x dx\]

Integrating both sides, we get

\[\int y^2 dy = 2\int x dx\]

\[ \Rightarrow \frac{y^3}{3} = x^2 + C . . . . . \left( 1 \right)\]

Now the given curve passes theough (- 2, 3)

Therefore, when x = - 2, y = 3 

Substituting x = - 2 and y = 3 in (1) we get

\[\frac{3^3}{3} = \left( - 2 \right)^2 + C\]

\[ \Rightarrow 9 = 4 + C\]

\[ \Rightarrow C = 5\]

Putting the value of `C` in (1), we get

\[\frac{y^3}{3} = x^2 + 5\]

\[ \Rightarrow y^3 = 3 x^2 + 15\]

\[ \Rightarrow y = \left( 3 x^2 + 15 \right)^\frac{1}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 147]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 69 | Page 147

RELATED QUESTIONS

Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} = \left( x + y \right)^2\]


\[\frac{dy}{dx} - y \tan x = e^x\]


x2 dy + (x2 − xy + y2) dx = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + y = 4x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×