Advertisements
Advertisements
Question
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
Options
y = `"ce"^((-x^2)/2`
y = `"ce"^((x^2)/2`
y = `(x + "c")"e"^((x^2)/2`
y = `("c" - x)"e"^((x^2)/2`
Solution
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is y = `(x + "c")"e"^((x^2)/2`.
Explanation:
The given differential equation is `("d"y)/("d"x) = "e"^(x^2/2) + xy`
⇒ `("d"y)/("d"x) - xy = "e"^((x^2)/2`
Since it is linear differential equation
Where P = –x and Q = `"e"^((x^2)/2`
∴ Integrating factor I.F. = `"e"^(int Pdx)`
= `"e"^(int -x "d"x)`
= `"e"^(- x^2/2)`
So, the solution is `y xx "I"."F". = int "Q" xx "I"."F". "d"x + "c"`
⇒ `y xx "e"^( x^2/2) = int "e"^(x^2/2) "e"^(- x^2/2) "d"x + "c"`
⇒ `y xx "e"^(- x^2/2) = int "e"^0 "d"x + "c"`
⇒ `y xx "e"^(- x^2/2) = int 1 . "d"x + "c"`
⇒ `y xx "e"^(- x^2/2) = x + "c"`
∴ y = `(x + "c")"e"^(x^2/2)`.
APPEARS IN
RELATED QUESTIONS
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
Which of the following differential equations has y = x as one of its particular solution?
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.