Advertisements
Advertisements
Question
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Solution
Cos ( x + y )dy = dx
∴ `dy/dx = 1/[ cos ( x + y )]`
Let x + y = t
∴ 1 + `dy/dx = dt/dx`
∴ `dt/dx - 1 = 1/[ cos t ]`
`dt/dx = 1/[cost] + 1`
`dt/dx = [ 1 + cost ]/cost`
∴ `cost/[ 1 + cost ]dt = dx`
Integrating both side.
∴ `int cost/[ 1 + cost ]dt = int dx`
∴ `int [ cost( 1 - cost )]/sin^2t dt = x + c`
∴ `int (cosect.cot t - cot^2 t) dt = x + c`
∴ `int ( cosec t.cot t - cosec^2 t + 1 )dt = x + c`
∴ - cosect + cot t + t = x + c
∴ ` [cos t]/[sin t] - 1/[sin t] + t = x + c`
- tan`[( x + y )/2]` + x + y = x + c
∴ -tan`[( x + y )/2]`+ y = c
Putting x = 0, y = 0
∴ -tan`[( 0 + 0 )/2]`+ 0 = c
∴ c = 0
∴ y = tan`[( x + y )/2]`
APPEARS IN
RELATED QUESTIONS
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The number of arbitrary constants in the particular solution of a differential equation of third order is
Which of the following differential equations has y = x as one of its particular solution?
\[\frac{dy}{dx} + 1 = e^{x + y}\]
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + 2y = \sin 3x\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the general solution of `"dy"/"dx" + "a"y` = emx
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Solution of differential equation xdy – ydx = 0 represents : ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.