Advertisements
Advertisements
Question
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solution
We have,
\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x + 2y}{x - y} . . . . . \left( 1 \right)\]
Clearly this is a homogeneous equation,
Putting y = vx
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{Substituting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}\text{ (1) becomes,} \]
\[v + x\frac{dv}{dx} = \frac{x + 2vx}{x - vx}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 + 2v}{1 - v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v}{1 - v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v - v + v^2}{1 - v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v^2 + v + 1}{1 - v}\]
\[ \Rightarrow \frac{1 - v}{v^2 + v + 1}dv = \frac{1}{x}dx\]
\[ \Rightarrow \left[ \frac{- v}{v^2 + v + 1} + \frac{1}{v^2 + v + 1} \right]dv = \frac{1}{x}dx\]
\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1 - 1}{v^2 + v + 1} + \frac{1}{v^2 + v + 1} \right]dv = \frac{1}{x}dx\]
\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{1}{2} \times \frac{1}{v^2 + v + 1} + \frac{1}{v^2 + v + 1} \right]dv = \frac{1}{x}dx\]
\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{3}{2} \times \frac{1}{v^2 + v + 1} \right]dv = \frac{1}{x}dx\]
\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{3}{2} \times \frac{1}{v^2 + v + \frac{1}{4} + \frac{3}{4}} \right]dv = \frac{1}{x}dx\]
\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{3}{2} \times \frac{1}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right]dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[ \Rightarrow \int\left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{3}{2} \times \frac{1}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right]dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{2}\int\frac{2v + 1}{v^2 + v + 1}dv + \frac{3}{2}\int\frac{1}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{2}\log \left| v^2 + v + 1 \right| + \frac{3}{2} \times \frac{1}{\frac{\sqrt{3}}{2}} \tan^{- 1} \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} = \log \left| x \right| + C\]
\[ \Rightarrow - \frac{1}{2}\log \left| \left( \frac{y}{x} \right)^2 + \frac{y}{x} + 1 \right| + \frac{3}{2} \times \frac{1}{\frac{\sqrt{3}}{2}} \tan^{- 1} \frac{\frac{y}{x} + \frac{1}{2}}{\frac{\sqrt{3}}{2}} = \log \left| x \right| + C\]
\[ \Rightarrow - \frac{1}{2}\log \left| \frac{y^2 + xy + x^2}{x^2} \right| + \sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = \log \left| x \right| + C\]
\[ \Rightarrow - \frac{1}{2}\log \left| y^2 + xy + x^2 \right| + \frac{1}{2}\log \left| x^2 \right| + \sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = \log \left| x \right| + C\]
\[ \Rightarrow - \frac{1}{2}\log \left| y^2 + xy + x^2 \right| + \log \left| x \right| + \sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = \log \left| x \right| + C\]
\[ \Rightarrow - \frac{1}{2}\log \left| y^2 + xy + x^2 \right| + \sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = C\]
\[ \Rightarrow \log \left| y^2 + xy + x^2 \right| - 2\sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = - 2C\]
\[ \Rightarrow \log \left| y^2 + xy + x^2 \right| = 2\sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) - 2C\]
\[ \Rightarrow \log \left| y^2 + xy + x^2 \right| = 2\sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) + k\text{ Where, }k = - 2C\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Find the differential equation of all non-horizontal lines in a plane.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of differential equation coty dx = xdy is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`