Advertisements
Advertisements
Question
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Solution
We have,
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x\left( x^2 - 1 \right)}\]
\[ \Rightarrow dy = \left\{ \frac{1}{x\left( x^2 - 1 \right)} \right\}dx\]
Integrating both sides, we get
\[\int dy = \int\left\{ \frac{1}{x\left( x^2 - 1 \right)} \right\}dx\]
\[ \Rightarrow y = \int\left\{ \frac{1}{x\left( x^2 - 1 \right)} \right\}dx + C\]
\[ \Rightarrow y = \int\left\{ \frac{1}{x\left( x + 1 \right)\left( x - 1 \right)} \right\}dx + C . . . . . . . . \left( 1 \right)\]
\[\text{Let }\frac{1}{x\left( x + 1 \right)\left( x - 1 \right)} = \frac{A}{x} + \frac{B}{x + 1} + \frac{C}{x - 1}\]
\[ \Rightarrow 1 = A\left( x + 1 \right)\left( x - 1 \right) + Bx\left( x - 1 \right) + Cx\left( x + 1 \right)\]
\[ \Rightarrow 1 = A\left( x^2 - 1 \right) + B\left( x^2 - x \right) + C\left( x^2 + x \right)\]
\[ \Rightarrow 1 = x^2 \left( A + B + C \right) + x\left( - B + C \right) - A\]
Comparing both sides, we get
\[ - A = 1 . . . . . . . . . (2)\]
\[ - B + C = 0 . . . . . . . . .(3)\]
\[A + B + C = 0 . . . . . . . . (4)\]
Solving (2), (3) and (4), we get
\[A = - 1\]
\[B = \frac{1}{2}\]
\[C = \frac{1}{2}\]
\[ \therefore \frac{1}{x\left( x + 1 \right)\left( x - 1 \right)} = \frac{- 1}{x} + \frac{1}{2\left( x + 1 \right)} + \frac{1}{2\left( x - 1 \right)}\]
Now, (1) becomes
\[y = \int\left\{ \frac{- 1}{x} + \frac{1}{2\left( x + 1 \right)} + \frac{1}{2\left( x - 1 \right)} \right\}dx + C\]
\[ \Rightarrow y = - \int\frac{1}{x}dx + \frac{1}{2}\int\frac{1}{x - 1}dx + \frac{1}{2}\int\frac{1}{x - 1}dx\]
\[ \Rightarrow y = - \log \left| x \right| + \frac{1}{2}\log \left| x - 1 \right| + \frac{1}{2}\log \left| x + 1 \right| + C\]
\[ \Rightarrow y = \frac{1}{2}\log \left| x - 1 \right| + \frac{1}{2}\log \left| x + 1 \right| - \log \left| x \right| + C\]
Given:- `y(2) = 0`
\[ \therefore 0 = \frac{1}{2}\log \left| 2 - 1 \right| + \frac{1}{2}\log \left| 2 + 1 \right| - \log \left| 2 \right| + C\]
\[ \Rightarrow C = \log \left| 2 \right| - \frac{1}{2}\log \left| 3 \right|\]
Substituting the value of `C`, we get
\[y = \frac{1}{2}\log \left| x - 1 \right| + \frac{1}{2}\log \left| x + 1 \right| - \log \left| x \right| + \log \left| 2 \right| - \frac{1}{2}\log \left| 3 \right|\]
\[ \Rightarrow 2y = \log \left| x - 1 \right| + \log \left| x + 1 \right| - 2\log \left| x \right| + 2\log \left| 2 \right| - \log \left| 3 \right|\]
\[ \Rightarrow 2y = \log \left| x - 1 \right| + \log \left| x + 1 \right| - \log \left| x^2 \right| + \log \left| 4 \right| - \log \left| 3 \right|\]
\[ \Rightarrow 2y = \log\frac{\left( x - 1 \right)\left( x + 1 \right)}{x^2} - \left( \log\left| 3 \right| - \log\left| 4 \right| \right)\]
\[ \Rightarrow y = \frac{1}{2}\log\frac{\left( x^2 - 1 \right)}{x^2} - \frac{1}{2}\log \left( \frac{3}{4} \right)\]
RELATED QUESTIONS
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
If y = etan x+ (log x)tan x then find dy/dx
Solve the differential equation `cos^2 x dy/dx` + y = tan x
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The number of arbitrary constants in the general solution of differential equation of fourth order is
Which of the following differential equations has y = x as one of its particular solution?
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} = \left( x + y \right)^2\]
cos (x + y) dy = dx
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Find the differential equation of all non-horizontal lines in a plane.
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The solution of differential equation coty dx = xdy is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Which of the following differential equations has `y = x` as one of its particular solution?
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.