Advertisements
Advertisements
Question
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Solution
We have,
`2 cos x(dy)/(dx)+4y sin x = sin 2x`
\[\Rightarrow \frac{dy}{dx} + 4y\frac{\sin x}{2 \cos x} = \frac{2\sin x \cos x}{2 \cos x}\]
\[ \Rightarrow \frac{dy}{dx} + 2y \tan x = \sin x\]
\[\text{Comparing with} \frac{dy}{dx} + Py = Q,\text{ we get}\]
\[P = 2\tan x\]
\[Q = \sin x\]
Now,
\[I . F . = e^{2\int\tan x dx} \]
\[ = e^{2\log\left( sec x \right)} \]
\[ = \sec^2 x\]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow y \sec^2 x = \int\sin x \sec^2 x dx + C\]
\[ \Rightarrow y \sec^2 x = \int\tan x \sec x dx + C\]
\[ \Rightarrow y \sec^2 x = \sec x + C\]
\[ \Rightarrow y = \cos x + C \cos^2 x . . . . . \left( 1 \right)\]
Now,
\[\text{When }x = \frac{\pi}{3}, y = 0 \]
\[ \therefore 0 = \cos \frac{\pi}{3} + C \cos^2 \frac{\pi}{3}\]
\[ \Rightarrow 0 = \frac{1}{2} + C\frac{1}{4}\]
\[ \Rightarrow C = - 2\]
Putting the value of C in (1), we get
\[y = \cos x - 2 \cos^2 x\]
APPEARS IN
RELATED QUESTIONS
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
If y = etan x+ (log x)tan x then find dy/dx
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
(x3 − 2y3) dx + 3x2 y dy = 0
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.