Advertisements
Advertisements
Question
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solution
Given equation is `(x + 2y^3) "dy"/"dx"` = y
⇒ `"dy"/"dx" = y/(x + 2y^3)`
⇒ `"dx"/"dy" = (x + 2y^3)/y`
⇒ `"dx"/"dy" = x/y + (2y^3)/y`
⇒ `"dx"/"dy" - x/y` = 2y3
Here P = `- 1/y` and Q = 2y2.
∴ Integrating factor I.F. = `"e"^(intPdy)`
= `"e"^(int 1/y dy)`
= `"e"^(-log y)`
= `"e"^(log 1/y)`
= `1/y`.
So the solution of the equation is
x.I.F. = `int "Q"."I"."F". "d"y + "c"`
`x . 1/y = int 2y^2 . 1/y "d"y + "c"`
⇒ `x/y = 2 int y "d"y + "c"`
⇒ `x/y = 2. y^2/2 + "c"`
⇒ `x/y = y^2 + "c"`
So x = y3 + cy = y(y2 + c)
Hence, the required solution is x = y(y2 + c).
APPEARS IN
RELATED QUESTIONS
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
Which of the following differential equations has y = x as one of its particular solution?
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
x2 dy + (x2 − xy + y2) dx = 0
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Find the differential equation of all non-horizontal lines in a plane.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The solution of differential equation coty dx = xdy is ______.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.