Advertisements
Advertisements
Question
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
Options
y = 2 + x2
\[y = \frac{1 + x}{1 - x}\]
y = x (x − 1)
\[y = \frac{1 - x}{1 + x}\]
Solution
\[ \Rightarrow \left( x^2 + 1 \right)\frac{dy}{dx} = - \left( y^2 + 1 \right)\]
\[ \Rightarrow \frac{1}{\left( y^2 + 1 \right)}dy = - \frac{1}{\left( x^2 + 1 \right)}dx\]
Integrating both sides, we get
\[\int\frac{1}{\left( y^2 + 1 \right)}dy = - \int\frac{1}{\left( x^2 + 1 \right)}dx\]
\[ \Rightarrow \tan^{- 1} y = - \tan^{- 1} x + \tan^{- 1} C\]
\[ \Rightarrow \tan^{- 1} y + \tan^{- 1} x = \tan^{- 1} C\]
\[ \Rightarrow \tan^{- 1} \left( \frac{x + y}{1 - xy} \right) = \tan^{- 1} C\]
\[ \Rightarrow \frac{x + y}{1 - xy} = C\]
\[ \Rightarrow x + y = 1 - xy\]
\[ \Rightarrow y + xy = 1 - x\]
\[ \Rightarrow y\left( 1 + x \right) = 1 - x\]
\[ \Rightarrow y = \frac{1 - x}{1 + x}\]
Notes
The initial value conditions are not given, so the final answer will be obatined only if \[C = 1.\]
APPEARS IN
RELATED QUESTIONS
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of differential equation coty dx = xdy is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.