English

Solve the differential equation: (1 + y2) dx = (tan−1 y − x) dy - Mathematics

Advertisements
Advertisements

Question

Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy

Sum

Solution

We have,

\[\left( 1 + y^2 \right)dx = \left( \tan^{- 1} y - x \right)dy\]

\[ \Rightarrow \frac{dx}{dy} = \frac{\tan^{- 1} y - x}{1 + y^2}\]

\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{\tan^{- 1} y}{1 + y^2}\]

\[\text{Comparing with }\frac{dx}{dy} + Px = Q,\text{ we get}\]

\[P = \frac{1}{1 + y^2} \]

\[Q = \frac{\tan^{- 1} y}{1 + y^2}\]

Now,

\[I . F . = e^{\int\frac{1}{1 + y^2}dy} = e^{\tan^{- 1} y} \]

So, the solution is given by

\[x \times e^{\tan^{- 1} y} = \int\frac{\tan^{- 1} y}{1 + y^2} \times e^{\tan^{- 1} y} dy + C\]

\[ \Rightarrow x e^{\tan^{- 1} y} = I + C . . . . . . . . \left( 1 \right)\]

Now,

\[I = \int\frac{\tan^{- 1} y}{1 + y^2} \times e^{\tan^{- 1} y} dy\]

\[\text{Putting }t = \tan^{- 1} y,\text{ we get}\]

\[dt = \frac{1}{1 + y^2}dy\]

\[\therefore I = \int\underset{I}{t}\times \underset{II}{e^t} \text{  }dt\]

\[ = t \times \int e^t dt - \int\left( \frac{d t}{d t} \times \int e^t dt \right)dt\]

\[ = t e^t - \int e^t dt\]

\[ = t e^t - e^t \]

\[ \therefore I = \tan^{- 1} y e^{\tan^{- 1} y} - e^{\tan^{- 1} y} \]

\[ = e^{\tan^{- 1} y} \left( \tan^{- 1} y - 1 \right)\]

Putting the value of `I` in (1), we get

\[x e^{\tan^{- 1} y} = e^{\tan^{- 1} y} \left( \tan^{- 1} y - 1 \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 146]

RELATED QUESTIONS

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


If y = etan x+ (log x)tan x then find dy/dx


Solve the differential equation `cos^2 x dy/dx` + y = tan x


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} + 1 = e^{x + y}\]


cos (x + y) dy = dx


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


x2 dy + (x2 − xy + y2) dx = 0


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Find the differential equation of all non-horizontal lines in a plane.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×