English

The General Solution of the Differential Equation Ex Dy + (Y Ex + 2x) Dx = 0 is - Mathematics

Advertisements
Advertisements

Question

The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is

Options

  • x ey + x2 = C

  • x ey + y2 = C

  • y ex + x2 = C

  • y ey + x2 = C

MCQ

Solution

y ex + x2 = C

 

We have,

ex dy + (yex + 2x) dx = 0

\[\text{ Dividing both sides by }e^x dx, \text{ we get }\]

\[\frac{dy}{dx} + \left( y + \frac{2x}{e^x} \right) = 0\]

\[ \Rightarrow \frac{dy}{dx} + y = - \frac{2x}{e^x}\]

\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]

\[P = 1\]

\[Q = - \frac{2x}{e^x}\]

Now,

\[I . F . = e^{\int dx = e^x} \]

Solution is given by,

\[y \times I . F . = \int\left( Q \times I . F . \right) dx + C\]

\[ \Rightarrow y e^x = - \int e^x \times \frac{2x}{e^x}dx + C\]

\[ \Rightarrow y e^x = - 2\int x dx + C\]

\[ \Rightarrow y e^x = - x^2 + C\]

\[ \Rightarrow y e^x + x^2 = C \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 144]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 54 | Page 144

RELATED QUESTIONS

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


Which of the following differential equations has y = x as one of its particular solution?


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


(x + y − 1) dy = (x + y) dx


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×