Advertisements
Advertisements
Question
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
Options
circles
straight lines
ellipses
parabolas
Solution
parabolas
We have,
\[2x\frac{dy}{dx} - y = 3\]
\[ \Rightarrow 2x\frac{dy}{dx} = 3 + y\]
\[ \Rightarrow \frac{1}{3 + y}dy = \frac{1}{2x}dx\]
Integrating both sides, we get
\[\int\frac{1}{3 + y}dy = \frac{1}{2}\int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| 3 + y \right| = \frac{1}{2}\log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| 3 + y \right| - \log \left| x^\frac{1}{2} \right| = \log C\]
\[ \Rightarrow \log \left| \frac{3 + y}{\sqrt{x}} \right| = \log C\]
\[ \Rightarrow \frac{3 + y}{\sqrt{x}} = C\]
\[ \Rightarrow 3 + y = C\sqrt{x}\]
Squaring both sides, we get
\[ \left( 3 + y \right)^2 = Cx . . . . . \left( 1 \right)\]
\[\text{ Thus, }\left( 1 \right)\text{ represents the equation of parabolas .}\]
APPEARS IN
RELATED QUESTIONS
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.