English

The Solution of the Differential Equation 2 X D Y D X − Y = 3 Represents - Mathematics

Advertisements
Advertisements

Question

The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents

Options

  • circles

  • straight lines

  • ellipses

  • parabolas

MCQ

Solution

parabolas

 

We have,

\[2x\frac{dy}{dx} - y = 3\]

\[ \Rightarrow 2x\frac{dy}{dx} = 3 + y\]

\[ \Rightarrow \frac{1}{3 + y}dy = \frac{1}{2x}dx\]

Integrating both sides, we get

\[\int\frac{1}{3 + y}dy = \frac{1}{2}\int\frac{1}{x}dx\]

\[ \Rightarrow \log \left| 3 + y \right| = \frac{1}{2}\log \left| x \right| + \log C\]

\[ \Rightarrow \log \left| 3 + y \right| - \log \left| x^\frac{1}{2} \right| = \log C\]

\[ \Rightarrow \log \left| \frac{3 + y}{\sqrt{x}} \right| = \log C\]

\[ \Rightarrow \frac{3 + y}{\sqrt{x}} = C\]

\[ \Rightarrow 3 + y = C\sqrt{x}\]

Squaring both sides, we get

\[ \left( 3 + y \right)^2 = Cx . . . . . \left( 1 \right)\]

\[\text{ Thus, }\left( 1 \right)\text{ represents the equation of parabolas .}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 141]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 20 | Page 141

RELATED QUESTIONS

Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×