English

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation: y = x2 + 2x + C : y′ – 2x – 2 = 0 - Mathematics

Advertisements
Advertisements

Question

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0

Sum

Solution

y = x2 + 2x + C

`dy/dx` = 2x + 2

⇒ `dy/dx` - 2x - 2 = 0

or y’ - 2x - 2 = 0

The given function is the solution of the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.2 [Page 385]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.2 | Q 2 | Page 385

RELATED QUESTIONS

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


Which of the following differential equations has y = x as one of its particular solution?


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The solution of differential equation coty dx = xdy is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×