English

The solution of the differential equation dddydx+2xy1+x2=1(1+x2)2 is ______. - Mathematics

Advertisements
Advertisements

Question

The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.

Options

  • y(1 + x2) = c + tan–1x

  • `y/(1 + x^2) = "c" + tan^-1x`

  • y log(1 + x2) = c + tan–1x

  • y(1 + x2) = c + sin–1x

MCQ
Fill in the Blanks

Solution

The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is y(1 + x2) = c + tan–1x.

Explanation:

The given differential equation is `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2`

Since, it is a linear differential equation

P = `(2x)/(1 + x^2)` and Q = `1/(1 + x^2)^2`

Integrating factor I.F. = `"e"^(int Pdx)`

= `"e"^(int (2x)/(1 + x^2) "d"x)`

= `"e"^(log(1 + x^2))`

= `(1 + x^2)`

∴ Solution is `y xx "I"."F". = int "Q" xx "I"."F".  "d"x + "c"`

⇒ `y(1 + x^2) = int 1/(1 + x^2)^2 xx (1 + x^2)"d"x + "c"`

⇒ `y(1 + x^2) = int 1/((1 + x^2)) "d"x + "c"`

⇒ `y(1 + x^2) = tan^-1x + "c"`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 201]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 75 | Page 201

RELATED QUESTIONS

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×