Advertisements
Advertisements
प्रश्न
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
विकल्प
y(1 + x2) = c + tan–1x
`y/(1 + x^2) = "c" + tan^-1x`
y log(1 + x2) = c + tan–1x
y(1 + x2) = c + sin–1x
उत्तर
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is y(1 + x2) = c + tan–1x.
Explanation:
The given differential equation is `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2`
Since, it is a linear differential equation
P = `(2x)/(1 + x^2)` and Q = `1/(1 + x^2)^2`
Integrating factor I.F. = `"e"^(int Pdx)`
= `"e"^(int (2x)/(1 + x^2) "d"x)`
= `"e"^(log(1 + x^2))`
= `(1 + x^2)`
∴ Solution is `y xx "I"."F". = int "Q" xx "I"."F". "d"x + "c"`
⇒ `y(1 + x^2) = int 1/(1 + x^2)^2 xx (1 + x^2)"d"x + "c"`
⇒ `y(1 + x^2) = int 1/((1 + x^2)) "d"x + "c"`
⇒ `y(1 + x^2) = tan^-1x + "c"`.
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
Which of the following differential equations has `y = x` as one of its particular solution?