हिंदी

( 2 a X + X 2 ) D Y D X = a 2 + 2 a X - Mathematics

Advertisements
Advertisements

प्रश्न

`(2ax+x^2)(dy)/(dx)=a^2+2ax`

योग

उत्तर

\[\left( 2ax + x^2 \right)\frac{dy}{dx} = a^2 + 2ax \]

\[\frac{dy}{dx} = \frac{a^2 + 2ax}{2ax + x^2} = \frac{a\left( a + 2x \right)}{x\left( 2a + x \right)} \]

\[\text{Let }x = 2a \tan^2 \theta \Rightarrow dx = 4a \tan\theta \sec^2 \theta\ d \theta \]

\[\frac{dy}{dx} = \frac{a\left( a + 4a\ tan^2 \theta \right)}{2a \tan^2 \theta \left( 2a \right)\left( 1 + \tan^2 \theta \right)}\]

\[\int dy = \int\frac{a \left( 1 + 4 \tan^2 \theta \right)}{2 \tan^2 \theta \left( 2a \right) \left( \sec^2 \theta \right)}dx \]

\[\int dy = \int\frac{a\left( 1 + 4 \tan^2 \theta \right)}{2 \tan^2 \theta \left( 2a \right) \left( \sec^2 \theta \right)}\left( 4a \right)\tan\theta \sec^2 \theta\ d\theta \]

\[= \int\frac{a \left( 1 + 4 \tan^2 \theta \right)}{\tan\theta}d\theta \]

\[= a\int\left( \frac{1}{\tan\theta} + 4\tan\theta \right)d\theta \]

\[y = a\int\cot\theta + 4\ tan\theta\ d\theta \]

\[ y = a\left[ \log \sin\theta + 4 \left( - \log \cos\theta \right) \right] + c \]

\[ y = a\left[ \log\sin\theta - 4\log \cos\theta \right] + c \]

\[\text{As, }x = 2a \tan^2 \theta \Rightarrow \tan\theta = \sqrt{\frac{x}{2a}} \]

\[y = a \log \left( \frac{\sin\theta}{\cos^4 \theta} \right) + c \]

\[= a\log\left( \frac{\tan\theta}{\cos^3 \theta} \right) + c \]

\[= a\log \left( \sqrt{\frac{x}{2a}} \times \left( \sqrt{\frac{x + 2a}{2a}} \right)^3 \right) + c \]

\[y = a\log\left( \frac{x^\frac{1}{2} {(x + 2a)}^\frac{3}{2}}{4 a^2} \right) + c\]

\[y + C = \frac{a}{2} \left( \log x + 3\log\left( x + 2a \right) \right)\text{ where }C = c - a\log\left( 4 a^2 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 47 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


(x + y − 1) dy = (x + y) dx


\[\frac{dy}{dx} - y \tan x = e^x\]


(x2 + 1) dy + (2y − 1) dx = 0


\[\frac{dy}{dx} + 5y = \cos 4x\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


The solution of differential equation coty dx = xdy is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×