Advertisements
Advertisements
प्रश्न
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
उत्तर
The number of arbitrary constants in the general solution of a differential equation of order three is 3.
Explanation:
Given that general solution of a differential equation has three arbitrary constants.
So we require three more equations to eliminate these three constants.
We can get three more equations by differentiating given equation three times.
So, the order of the differential equation is 3.
APPEARS IN
संबंधित प्रश्न
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} - y \tan x = e^x\]
x2 dy + (x2 − xy + y2) dx = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.