मराठी

The number of arbitrary constants in the general solution of a differential equation of order three is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The number of arbitrary constants in the general solution of a differential equation of order three is ______.

रिकाम्या जागा भरा

उत्तर

The number of arbitrary constants in the general solution of a differential equation of order three is 3.

Explanation:

Given that general solution of a differential equation has three arbitrary constants.

So we require three more equations to eliminate these three constants.

We can get three more equations by differentiating given equation three times.

So, the order of the differential equation is 3.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ २०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 76.(iii) | पृष्ठ २०२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Solve the differential equation `cos^2 x dy/dx` + y = tan x


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


x2 dy + (x2 − xy + y2) dx = 0


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the differential equation of all non-horizontal lines in a plane.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Which of the following differential equations has `y = x` as one of its particular solution?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×