मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the Particular Solution When X = 0 and Y = π. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.

उत्तर

3ex tanydx + (1 +ex) sec2 ydy = 0

Divide by tany(1+ex)

`(3e^x)/(1+e^x)dx+(sec^2y)/(tany)dy=0`

`int(3e^x)/(1+e^x)dx+int(sec^2y)/(tany)dy=0`

Put tan y = t

dt = sec2y

`3 log|1+e^x|+int1/tdt=c`

`3log|1+e^x|+log|t|=c`

`3log|1+e^x|+log|tany|=c ................(1)`

put x=0 and y=pi in (1)

`3log|1+e^0|+log|0|=c`

`3log|2|=c................(2)`

`3log|1+e^x|+log|tany|=3log|2| `

`3log|1+e^x|+log|tany|-3log|2|=0`

`3(log|1+e^x|-log|2|)+log|tany|=0`

`3log((1+e^x)/2)+log|tany|=0`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (October)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


(x + y − 1) dy = (x + y) dx


(x2 + 1) dy + (2y − 1) dx = 0


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


x2 dy + (x2 − xy + y2) dx = 0


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


The solution of differential equation coty dx = xdy is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×