Advertisements
Advertisements
प्रश्न
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
उत्तर
3ex tanydx + (1 +ex) sec2 ydy = 0
Divide by tany(1+ex)
`(3e^x)/(1+e^x)dx+(sec^2y)/(tany)dy=0`
`int(3e^x)/(1+e^x)dx+int(sec^2y)/(tany)dy=0`
Put tan y = t
dt = sec2y
`3 log|1+e^x|+int1/tdt=c`
`3log|1+e^x|+log|t|=c`
`3log|1+e^x|+log|tany|=c ................(1)`
put x=0 and y=pi in (1)
`3log|1+e^0|+log|0|=c`
`3log|2|=c................(2)`
`3log|1+e^x|+log|tany|=3log|2| `
`3log|1+e^x|+log|tany|-3log|2|=0`
`3(log|1+e^x|-log|2|)+log|tany|=0`
`3log((1+e^x)/2)+log|tany|=0`
APPEARS IN
संबंधित प्रश्न
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
(x + y − 1) dy = (x + y) dx
(x2 + 1) dy + (2y − 1) dx = 0
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The solution of differential equation coty dx = xdy is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.