मराठी

If M and N Are the Order and Degree of the Differential Equation ( Y 2 ) 5 + 4 ( Y 2 ) 3 Y 3 + Y 3 = X 2 − 1 , Then - Mathematics

Advertisements
Advertisements

प्रश्न

If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then

पर्याय

  • m = 3, n = 3

  • m = 3, n = 2

  • m = 3, n = 5

  • m = 3, n = 1

MCQ

उत्तर

m = 3, n = 2
 
We have,
\[ \left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\]
\[ \Rightarrow y_3 \left( y_2 \right)^5 + 4 \left( y_2 \right)^3 + \left( y_3 \right)^2 = y_3 \left( x^2 - 1 \right)\]
\[\text{ The highest order derivative is }y_3\text{ and its highest exponent in this equation is 2.}\]
Therefore, order is 3 and degree is 2. 
Hence, m = 3, n = 2
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 26 | पृष्ठ १४१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


Find the differential equation representing the curve y = cx + c2.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Solve the differential equation `cos^2 x dy/dx` + y = tan x


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The number of arbitrary constants in the general solution of differential equation of fourth order is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} + 1 = e^{x + y}\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


x2 dy + (x2 − xy + y2) dx = 0


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find the differential equation of all non-horizontal lines in a plane.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×