मराठी

If `Y = Sin Power (-1) (6xsquaeroot(1-9x^2))`, `1by(3squareroot2) < X < 1/(3squarroott2)` Then Find `(Dy)By(Dx)` - Mathematics

Advertisements
Advertisements

प्रश्न

if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`

उत्तर

`y = sin^(-1) (6x sqrt(1-9x^2)), -1/(3sqrt2) < x < 1/(3sqrt2)`

`=> y = sin^(-1) (2 xx 3x xx sqrt(1-(3x)^2))`

Putting 3x = sinθ, we have

`y = sin^(-1) (2sin theta sqrt(1- sin^2 theta))`

⇒ y = sin−1 (2sinθ cosθ)
⇒ y = sin−1(sin2θ)
⇒ y = 2θ

`[-1/(3sqrt2) < (sin theta)/3 < 1/(3sqrt2) => - 1/sqrt2 < sin theta < 1/sqrt2 => - pi/4 < theta < pi/4 => -pi/4  < 2theta <  pi/2]`

`:. y = 2sin^(-1) 3x`

Differentiating both sides w.r.t x, we get

`(dy)/(dx) = 2 xx 1/(sqrt(1-(3x)^2)) xx 3`

`=> (dy)/dx = 6/sqrt(1- 9x^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Delhi Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


x2 dy + (x2 − xy + y2) dx = 0


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The differential equation for which y = acosx + bsinx is a solution, is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×