Advertisements
Advertisements
प्रश्न
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
उत्तर
We have,
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
\[\Rightarrow \frac{dy}{dx} = - \frac{y^3}{xy + 1}\]
\[ \Rightarrow \frac{dx}{dy} = - \frac{xy + 1}{y^3}\]
\[ \Rightarrow \frac{dx}{dy} = - \frac{x}{y^2} - \frac{1}{y^3}\]
\[ \Rightarrow \frac{dx}{dy} + \frac{x}{y^2} = - \frac{1}{y^3}\]
\[\text{Comparing with }\frac{dx}{dy} + Px = Q,\text{ we get}\]
\[P = \frac{1}{y^2}\]
\[Q = - \frac{1}{y^3}\]
Now,
\[I . F . = e^{\int\frac{1}{y^2}dy} = e^{- \frac{1}{y}} \]
So, the solution is given by
\[x \times e^{- \frac{1}{y}} = \int - e^{- \frac{1}{y}} \frac{1}{y^3} dy + C\]
\[ \Rightarrow x e^{- \frac{1}{y}} = I + C . . . . . \left( 1 \right)\]
Now,
\[I = \int - e^{- \frac{1}{y}} \frac{1}{y^3} dy\]
\[\text{Putting }t = \frac{1}{y},\text{ we get}\]
\[dt = \frac{- 1}{y^2}dy\]
\[ = t \times \int e^{- t} dt - \int\left( \frac{d t}{d t} \times \int e^{- t} dt \right)dt\]
\[ = - t e^t + \int e^{- t} dt\]
\[ = - t e^{- t} - e^{- t} \]
\[ \therefore I = - \frac{1}{y} e^{- \frac{1}{y}} - e^{- \frac{1}{y}} = - e^{- \frac{1}{y}} \left( 1 + \frac{1}{y} \right)\]
Putting the value of `I` in (1), we get
\[x e^{- \frac{1}{y}} = - e^{- \frac{1}{y}} \left( 1 + \frac{1}{y} \right) + C\]
\[ \Rightarrow x = - \left( 1 + \frac{1}{y} \right) + C e^\frac{1}{y}\]
APPEARS IN
संबंधित प्रश्न
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Solve the differential equation `cos^2 x dy/dx` + y = tan x
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} = \left( x + y \right)^2\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
Which of the following differential equations has `y = x` as one of its particular solution?
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.