मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Solve the Differential Equation Cos^2 X Dy/Dx + Y = Tan X - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the differential equation `cos^2 x dy/dx` + y = tan x

बेरीज

उत्तर

`cos^2 x dy/dx` + y = tan x

∴ `dy/dx + y/(cos^2x) = tanx/(cos^2x)`

∴ `dy/dx + sec^2x.y` = tan x . sec2 x

The given equation is of the form

`dy/dx + Py` = Q,

Where P = sec2 x and Q = tan x. sec2 x

∴ I.F. = `e^(int Pdx) = e^(intsec^2x  dx)` = etan x

∴ Solution of the given equation is

y(I.F.) = `int Q.(I.F.)dx + c`

∴ yetan x = `int tan x.sec^2x.e^(tanx)dx+ c`

Put tan x = t

∴  sec2x dx = dt

∴  yetan x = `int te^t dt + c`

= `tint e^t dt - int[d/dt (t) inte^tdt]dt + c`

= `te^t - int e^tdt + c`

= tet – et + c

∴ yetan x = etanx (tanx – 1) + c

∴ y = tan x – 1 + c.e–tanx

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2012-2013 (October)

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The number of arbitrary constants in the general solution of differential equation of fourth order is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} = \left( x + y \right)^2\]


\[\frac{dy}{dx} - y \tan x = e^x\]


(x2 + 1) dy + (2y − 1) dx = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + y = 4x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Solution of differential equation xdy – ydx = 0 represents : ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The solution of differential equation coty dx = xdy is ______.


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×