Advertisements
Advertisements
प्रश्न
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
उत्तर
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by `x"e"^(intPdx) = int "Q"_1"e"^(int P_1"d"y) "d"y + "C"`.
Explanation:
We have `("d"x)/("d"x) + "P"_1x = "Q"_1`
For solving such equation we multiply both sides by
Integrating factor = I.F. = `"e"^(int Pdx)`
So we get `"e"^(intPdx) (("d"x)/("d"y) + "P"_1x) = "Q"_1"e"^(intPdx)`
⇒ `("d"x)/("d"y) "e"^(intPdx) + "P"_1"e"^(intPdy) = "Q"_1"e"^(intP_1dy)`
⇒ `"d"/("d"y)(x"e"^(intP_1dy)) = "Q"_1"e"^(intP_1dy)`
⇒ `int "d"/("d"y) (x"e"^(intP_1dy))"d"y = int "Q"_1"e"^(intP_1dy) "d"y`
⇒ `x"e"^(intP_1"d"y) = int"Q"_1"e"^(intP_1dy) "d"y + "C"`
This is the required solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
If y = etan x+ (log x)tan x then find dy/dx
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
(x + y − 1) dy = (x + y) dx
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.