Advertisements
Advertisements
प्रश्न
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
उत्तर
We have,
\[\frac{dy}{dx} = \frac{x + 1}{2 - y}\]
\[ \Rightarrow \left( 2 - y \right)dy = \left( x + 1 \right)dx\]
Integrating both sides, we get
\[\int\left( 2 - y \right)dy = \int\left( x + 1 \right)dx\]
\[ \Rightarrow 2y - \frac{y^2}{2} = \frac{x^2}{2} + x + C_1 \]
\[ \Rightarrow \frac{x^2}{2} + x + C_1 - 2y + \frac{y^2}{2} = 0\]
\[ \Rightarrow x^2 + 2x + y^2 + 2 C_1 - 4y = 0\]
\[ \Rightarrow x^2 + y^2 + 2x - 4y + C = 0 ........\left[\text{Where, }C = 2 C_1 \right]\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
If y = etan x+ (log x)tan x then find dy/dx
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The number of arbitrary constants in the particular solution of a differential equation of third order is
Which of the following differential equations has y = x as one of its particular solution?
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
x2 dy + (x2 − xy + y2) dx = 0
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.