Advertisements
Advertisements
प्रश्न
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
उत्तर
Given differential equation is `x (dy)/(dx) = y(logy - logx + 1)`
⇒ `(dy)/(dx) = y/x(log y/x + 1)`
Put y = vx
⇒ `(dy)/(dx) = v + x(dv)/(dx)`
⇒ `v + x (dv)/(dx) = v(logv + 1)`
⇒ `(dv)/(vlogv) = (dx)/x`
On integrating both sides, we get
`int (dx)/x = int(dx)/x`
⇒ log(logv) = logx + logC
⇒ log(logv) = logCx
⇒ log(y/x) = Cx
संबंधित प्रश्न
Find the differential equation representing the curve y = cx + c2.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
If y = etan x+ (log x)tan x then find dy/dx
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
\[\frac{dy}{dx} = \left( x + y \right)^2\]
(1 + y + x2 y) dx + (x + x3) dy = 0
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Solution of differential equation xdy – ydx = 0 represents : ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
Which of the following differential equations has `y = x` as one of its particular solution?
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.