Advertisements
Advertisements
प्रश्न
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
पर्याय
y = `"e"^x (x - 1)`
y = xex
y = `x"e"^-x + 1`
y = xe–x
उत्तर
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is y = xe–x .
Explanation:
The given differential equation is `("d"y)/("d"x) + y = "e"^-x`
Since, it is a linear differential equation then P = 1 and Q = `"e"^-x`
Integrating factor I.F. = `"e"^(int Pdx)`
= `'e"^(int 1. "d"x)`
= ex
∴ Solution is `y xx "I"."F". = int "Q" xx "I"."F". "d"x + "c"`
⇒ `y xx "e"^x = int"e"^-x xx "e"^x"d"x + "c"`
⇒ `y xx "e"^x = int "e"^0 "d"x + "c"`
⇒ `y xx "e"^x = int 1."d"x + "c"`
⇒ `y xx "e"^x = x + "c"`
Put y = 0 and x = 0
∴ 0 = 0 + c
∴ c = 0
∴ Equation is `y xx "e"^x` = x
So y = `x"e"^-x`.
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Solve the differential equation `dy/dx -y =e^x`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0