मराठी

Find the Particular Solution of the Differential Equation ( 1 + Y 2 ) + ( X − E Tan − 1 Y ) D Y D X = Given that Y = 0 When X = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

उत्तर

We have

\[\left( 1 + y^2 \right) +\left( x - e^{\tan^{- 1} y} \right)\frac{dy}{dx} = 0\]

\[ \Rightarrow \left( x - e^{\tan^{- 1} y} \right)\frac{dy}{dx} = - \left( 1 + y^2 \right)\]

\[ \Rightarrow \frac{dy}{dx} = - \frac{\left( 1 + y^2 \right)}{\left( x - e^{\tan^{- 1} y} \right)}\]

\[ \Rightarrow \frac{dx}{dy} = - \frac{x - e^{\tan^{- 1}} y}{1 + y^2}\]

\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{\tan^{- 1}} y}{1 + y^2} . . . . . \left( 1 \right)\]

\[\text { Clearly, it is a linear differential equation of the form } \]

\[\frac{dx}{dy} + Px = Q\]

\[\text { where }, \]

\[P = \frac{1}{1 + y^2}\]

\[Q = \frac{e^{\tan^{- 1}} y}{1 + y^2} \]

\[ \therefore I . F . = e^\int P dy \]

\[ = e^\int\frac{1}{1 + y^2} dy \]

\[ = e^{\tan^{- 1}} y \]

\[\text { Multiplying both sides of } \left( 1 \right) by e^{\tan^{- 1}
}y , we get\]

\[ e^{\tan^{- 1}} y \left( \frac{dx}{dy} + \frac{x}{1 + y^2} \right) = e^{\tan^{- 1}} y \frac{e^{\tan^{- 1}} y}{1 + y^2}\]

\[ \Rightarrow e^{\tan^{- 1}} y \frac{dx}{dy} + \frac{x e^{\tan^{- 1}} x}{1 + y^2} = \frac{e^{2 \tan^{- 1} y}}{1 + y^2}\]

\[\text { Integrating both sides with respect to y, we get }\]

\[x e^{\tan^{- 1} } y = \int\frac{e^{2 \tan^{- 1} y}}{1 + y^2} dy + C\]

\[ \Rightarrow x e^{\tan^{- 1} } y = I + C . . . . . \left( 2 \right)\]

\[\text { Here }, \]

\[I = \int\frac{e^{2 \tan^{- 1} y}}{1 + y^2} dy\]

\[\text { Putting } \tan^{- 1} y = t, \text { we get }\]

\[\frac{1}{1 + y^2}dy = dt\]

\[ \therefore I = \int e^{2t} dt\]

\[ = \frac{e^{2t}}{2}\]

\[ = \frac{e^{2 \tan^{- 1} y}}{2}\]

\[\text { Putting the value of I in } \left( 2 \right), \text { we get }\]

\[x  e^{\tan^{- 1} }y = \frac{e^{2 \ tan^{- 1} y}}{2} + C\]

\[ \Rightarrow 2x e^{\tan^{- 1} } y = e^{2 \tan^{- 1} y} + 2C\]

\[ \Rightarrow 2x e^{\tan^{- 1} } y = e^{2 \tan^{- 1} y} + k \left( \text { where }k = 2C \right)\]

\[ \Rightarrow 2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + k\]

\[2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + k \]

\[\text { To fiind the particular solution we have to put the values of x and y as 1 and 0 respectively } . \]

\[2 e^{\tan^{- 1} 0} = e^{2 \tan^{- 1} 0} + k\]

\[ \Rightarrow 2 = 1 + k\]

\[ \Rightarrow k = 1\]

\[\text{ So, the particular solution is } 2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + 1 . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Foreign Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


x (e2y − 1) dy + (x2 − 1) ey dx = 0


(1 + y + x2 y) dx + (x + x3) dy = 0


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the differential equation of all non-horizontal lines in a plane.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


y = aemx+ be–mx satisfies which of the following differential equation?


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×