Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
उत्तर
We have
\[\left( 1 + y^2 \right) +\left( x - e^{\tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
\[ \Rightarrow \left( x - e^{\tan^{- 1} y} \right)\frac{dy}{dx} = - \left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{\left( 1 + y^2 \right)}{\left( x - e^{\tan^{- 1} y} \right)}\]
\[ \Rightarrow \frac{dx}{dy} = - \frac{x - e^{\tan^{- 1}} y}{1 + y^2}\]
\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{\tan^{- 1}} y}{1 + y^2} . . . . . \left( 1 \right)\]
\[\text { Clearly, it is a linear differential equation of the form } \]
\[\frac{dx}{dy} + Px = Q\]
\[\text { where }, \]
\[P = \frac{1}{1 + y^2}\]
\[Q = \frac{e^{\tan^{- 1}} y}{1 + y^2} \]
\[ \therefore I . F . = e^\int P dy \]
\[ = e^\int\frac{1}{1 + y^2} dy \]
\[ = e^{\tan^{- 1}} y \]
\[\text { Multiplying both sides of } \left( 1 \right) by e^{\tan^{- 1}
}y , we get\]
\[ e^{\tan^{- 1}} y \left( \frac{dx}{dy} + \frac{x}{1 + y^2} \right) = e^{\tan^{- 1}} y \frac{e^{\tan^{- 1}} y}{1 + y^2}\]
\[ \Rightarrow e^{\tan^{- 1}} y \frac{dx}{dy} + \frac{x e^{\tan^{- 1}} x}{1 + y^2} = \frac{e^{2 \tan^{- 1} y}}{1 + y^2}\]
\[\text { Integrating both sides with respect to y, we get }\]
\[x e^{\tan^{- 1} } y = \int\frac{e^{2 \tan^{- 1} y}}{1 + y^2} dy + C\]
\[ \Rightarrow x e^{\tan^{- 1} } y = I + C . . . . . \left( 2 \right)\]
\[\text { Here }, \]
\[I = \int\frac{e^{2 \tan^{- 1} y}}{1 + y^2} dy\]
\[\text { Putting } \tan^{- 1} y = t, \text { we get }\]
\[\frac{1}{1 + y^2}dy = dt\]
\[ \therefore I = \int e^{2t} dt\]
\[ = \frac{e^{2t}}{2}\]
\[ = \frac{e^{2 \tan^{- 1} y}}{2}\]
\[\text { Putting the value of I in } \left( 2 \right), \text { we get }\]
\[x e^{\tan^{- 1} }y = \frac{e^{2 \ tan^{- 1} y}}{2} + C\]
\[ \Rightarrow 2x e^{\tan^{- 1} } y = e^{2 \tan^{- 1} y} + 2C\]
\[ \Rightarrow 2x e^{\tan^{- 1} } y = e^{2 \tan^{- 1} y} + k \left( \text { where }k = 2C \right)\]
\[ \Rightarrow 2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + k\]
\[2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + k \]
\[\text { To fiind the particular solution we have to put the values of x and y as 1 and 0 respectively } . \]
\[2 e^{\tan^{- 1} 0} = e^{2 \tan^{- 1} 0} + k\]
\[ \Rightarrow 2 = 1 + k\]
\[ \Rightarrow k = 1\]
\[\text{ So, the particular solution is } 2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + 1 . \]
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
x (e2y − 1) dy + (x2 − 1) ey dx = 0
(1 + y + x2 y) dx + (x + x3) dy = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the differential equation of all non-horizontal lines in a plane.
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
y = aemx+ be–mx satisfies which of the following differential equation?
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.