मराठी

2 Cos X D Y D X + 4 Y Sin X = Sin 2 X , Given that Y = 0 When X = π 3 . - Mathematics

Advertisements
Advertisements

प्रश्न

`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`

बेरीज

उत्तर

We have,

`2 cos x(dy)/(dx)+4y sin x = sin 2x`

\[\Rightarrow \frac{dy}{dx} + 4y\frac{\sin x}{2 \cos x} = \frac{2\sin x \cos x}{2 \cos x}\]

\[ \Rightarrow \frac{dy}{dx} + 2y \tan x = \sin x\]

\[\text{Comparing with} \frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = 2\tan x\]

\[Q = \sin x\]

Now,

\[I . F . = e^{2\int\tan x dx} \]

\[ = e^{2\log\left( sec x \right)} \]

\[ = \sec^2 x\]

So, the solution is given by

\[y \times I . F . = \int Q \times I . F . dx + C\]

\[ \Rightarrow y \sec^2 x = \int\sin x \sec^2 x dx + C\]

\[ \Rightarrow y \sec^2 x = \int\tan x \sec x dx + C\]

\[ \Rightarrow y \sec^2 x = \sec x + C\]

\[ \Rightarrow y = \cos x + C \cos^2 x . . . . . \left( 1 \right)\]

Now,

\[\text{When }x = \frac{\pi}{3}, y = 0 \]

\[ \therefore 0 = \cos \frac{\pi}{3} + C \cos^2 \frac{\pi}{3}\]

\[ \Rightarrow 0 = \frac{1}{2} + C\frac{1}{4}\]

\[ \Rightarrow C = - 2\]

Putting the value of C in (1), we get

\[y = \cos x - 2 \cos^2 x\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 59 | पृष्ठ १४६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


Which of the following differential equations has y = x as one of its particular solution?


(1 + y + x2 y) dx + (x + x3) dy = 0


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


(x3 − 2y3) dx + 3x2 y dy = 0


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


The member of arbitrary constants in the particulars solution of a differential equation of third order as


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×