Advertisements
Advertisements
प्रश्न
Solve the following differential equation:-
y dx + (x − y2) dy = 0
उत्तर
We have,
\[y dx + \left( x - y^2 \right)dy = 0\]
\[ \Rightarrow y dx = - \left( x - y^2 \right)dy \]
\[ \Rightarrow \frac{dx}{dy} = - \frac{1}{y}\left( x - y^2 \right) \]
\[ \Rightarrow \frac{dx}{dy} + \frac{1}{y}x = y . . . . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dx}{dy} + Px = Q\]
\[\text{where }P = \frac{1}{y}\text{ and }Q = y\]
\[ \therefore I . F . = e^{\int P\ dy} \]
\[ = e^{\int\frac{1}{y}dy} \]
\[ = e^{\log y = y}\]
Multiplying both sides of (1) by I . F . = y, we get
\[y\left( \frac{dx}{dy} + \frac{1}{y}x \right) = y \times y\]
\[ \Rightarrow y\frac{dx}{dy} + x = y^2 \]
Integrating both sides with respect to y, we get
\[xy = \int y^2 dy + C\]
\[ \Rightarrow xy = \frac{y^3}{3} + C\]
\[ \Rightarrow x = \frac{y^2}{3} + \frac{C}{y}\]
\[\text{Hence, }x = \frac{y^2}{3} + \frac{C}{y}\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + 2y = \sin 3x\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.