मराठी

Find the general solution of the differential equation: log(dydx)=ax+by. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.

बेरीज

उत्तर

Given differential equation is `log((dy)/(dx)) = ax + by`

⇒ `(dy)/(dx) = e^(ax  +  by)`

⇒ `(dy)/(dx) = e^(ax).e^(by)`

⇒ `(dy)/(e^(by)) = e^(ax) dx`

⇒ `e^(-by) dy = e^(ax) dx`

On integrating both sides, we get

`inte^(-by)dy = inte^(ax)dx`

`e^(-by)/(-b) = e^(ax)/a + C`

⇒ `e^(ax)/a - e^(-by)/b + C` = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Term 2 - Outside Delhi Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + 2y = \sin 3x\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×