Advertisements
Advertisements
प्रश्न
Find: `int (dx)/(x^2 - 6x + 13)`
उत्तर
Given integral is I = `int (dx)/(x^2 - 6x + 13)`
= `int (dx)/((x - 3)^2 + 13 - 9)`
= `int (dx)/((x - 3)^2 + 4)`
= `int (dx)/((x - 3)^2 + 2^2)`
= `1/2 tan^-1 ((x - 3)/2) + C` ...`["Using" int 1/(x^2 + a^2) dx = 1/a tan^-1 x/a + C]`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find `int (dx)/sqrt(4x - x^2)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.