Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int\text{ cos }\left( \text{ log x } \right) \text{ dx }\]
\[\text{ Let log x } = t\]
\[ \Rightarrow x = e^t \]
\[ \Rightarrow dx = e^t dt\]
\[I = \int e^t \cos\left( t \right)dt\]
`\text{Considering cos ( t ) as first function and` `\text{ e}^{t}` ` \text{ as second function} `
\[I = \text{ cos t e}^t - \int \left( - \sin t \right) e^t dt\]
\[ \Rightarrow I = \text{ cos t e}^t + \int \text{ sin t e }^t dt\]
\[ \Rightarrow I = \text{ cos t e}^t + I_1 . . . . . \left( 1 \right)\]
\[\text{ where I}_1 = \int e^t \text{ sin t dt }\]
\[ I_1 = \int e^t \text{ sin t dt}\]
\[\text{Cosidering sin t as first function and e}^t \text{ as second function}\]
\[ I_1 = \text{ sin t e}^t - \int \text{ cos t e }^t \text{ dt }\]
\[ \Rightarrow I_1 = \text{ sin t e}^t - I . . . . . \left( 2 \right)\]
` \text{ From ( 1 ) and ( 2) } `
\[I = \text{ cos t e}^t + \text{ sin t e}^t - I\]
\[ \Rightarrow 2I = e^t \left( \sin t + \cos t \right)\]
\[ \Rightarrow I = \frac{e^t \left( \sin t + \cos t \right)}{2} + C\]
\[ \Rightarrow I = \frac{e^\text{ log x }\left[ sin \left( \log x \right) + cos\left( \log x \right) \right]}{2} + C\]
\[ \Rightarrow I = \frac{x}{2}\left[ \text{ sin } \left( \log x \right) + \text{ cos } \left( \log x \right) \right] + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`