Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int e^{- 2x} \text{ sin x dx }\]
`\text{Considering sin x as first function and` `\text{ e}^{-2x}` ` \text{ as second function} `
\[I = \sin x\frac{e^{- 2x}}{- 2} - \int\cos x\left( \frac{e^{- 2x}}{- 2} \right)dx\]
\[ \Rightarrow I = - \frac{e^{- 2x} \sin x}{2} + \frac{1}{2}\int e^{- 2x} \text{ cos x dx }\]
\[ \Rightarrow I = - \frac{e^{- 2x} \sin x}{2} + \frac{I_1}{2} \text{ where } . . . . . \left( 1 \right)\]
\[\text{ Where,} I_1 = \int e^{- 2x} \text{ cos x dx }\]
`\text{Considering cos x as first function and` `\text{ e}^{-2x}` ` \text{ as second function} `
\[ I_1 = \frac{\text{ cos x e}^{- 2x}}{- 2} - \int\left( - \sin x \right)\frac{e^{- 2x}}{- 2}dx\]
\[ \Rightarrow I_1 = \frac{e^{- 2x} \cos x}{- 2} - \int\frac{\text{ sin x e}^{- 2x} dx}{2}\]
\[ \Rightarrow I_1 = \frac{- e^{- 2x} \cos x}{2} - \frac{I}{2} . . . . . \left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and }\ \left( 2 \right)\]
\[I = \frac{- e^{- 2x} \sin x}{2} + \frac{1}{2}\left[ \frac{- e^{- 2x} \cos x}{2} - \frac{I}{2} \right]\]
\[ \Rightarrow I + \frac{I}{4} = \frac{- e^{- 2x} \sin x}{2} - \frac{e^{- 2x} \cos x}{4}\]
\[ \Rightarrow \frac{5I}{4} = \frac{- e^{- 2x} \left( 2 \sin x + \cos x \right)}{4}\]
\[ \therefore I = \frac{e^{- 2x}}{5}\left( - 2 \sin x - \cos x \right) + C\]
APPEARS IN
संबंधित प्रश्न
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is