Advertisements
Advertisements
प्रश्न
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
उत्तर
\[\text{ Let I } = \int\left( \frac{8x + 13}{\sqrt{4x + 7}} \right)dx\]
\[\text{ Putting 4x} + 7 = t\]
\[ \Rightarrow x = \frac{t - 7}{4}\]
\[ \Rightarrow 4dx = dt\]
\[ \Rightarrow dx = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int\left\{ \frac{8 \left( \frac{t - 7}{4} \right) + 13}{\sqrt{t}} \right\}dt\]
\[ = \frac{1}{4}\int\left( \frac{2t - 14 + 13}{\sqrt{t}} \right)dt\]
\[ = \frac{1}{4}\int\left( \frac{2t - 1}{\sqrt{t}} \right)dt\]
\[ = \frac{1}{4}\int\frac{2t}{\sqrt{t}}dt - \frac{1}{4}\int\frac{dt}{\sqrt{t}}\]
\[ = \frac{1}{2}\int t^\frac{1}{2} dt - \frac{1}{4}\int t^{- \frac{1}{2}} dt\]
\[ = \frac{1}{2}\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - \frac{1}{4}\left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{2} \times \frac{2}{3} t^\frac{3}{2} - \frac{2}{4} t^\frac{1}{2} + C\]
\[ = \frac{1}{3} t^\frac{3}{2} - \frac{2}{4} t^\frac{1}{2} + C\]
\[ = \frac{1}{3} \left( 4x + 7 \right)^\frac{3}{2} - \frac{1}{2} \left( 4x + 7 \right)^\frac{1}{2} + C ....................\left( \because t = 4x + 7 \right)\]
\[ = \frac{1}{3} \left( 4x + 7 \right)^\frac{3}{2} - \sqrt{4x + 7} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .