Advertisements
Advertisements
प्रश्न
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
उत्तर
Let `I = int (x - 1)/sqrt(x^2 - 1) dx`
`= int x/(sqrt(x^2 - 1)) dx - int 1/sqrt(x^2 - 1) dx`
`= I_1 - I_2` (say)
Now , `I_1 = x/sqrt(x^2 - 1) dx`
Put x2 - 1 = t
2x dx = dt ⇒ x dx = `1/2` dt
`therefore I = 1/2 int dt/sqrtt = 1/2 int t^((-1)/2) dt`
`= 1/2 xx t^(1/2)/(1/2) + C_1 = sqrtt = C_1`
`= sqrt(x^2 - 1) + C_1`
and `I_2 int 1/sqrt(x^2 - 1) dx`
`= log [x + sqrt(x^2) - 1] + C_2` `....[∵ int dx/sqrt(x^2 - a^2) = log |x + sqrt(x^2 - a^2)| + C]`
`therefore I = sqrt(x^2 - 1) - log |x + sqrt(x^2 - 1)| +C`
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.